
In a nutshell: Step-by-step optimization

Given a continuous and differentiable real-valued function f of a real variable with an initial approximation of an

extremum x0. This algorithm uses iteration and interpolating polynomials.

Parameters:

 step The maximum error in the value of the minimum cannot exceed this value.

 abs The difference in the value of the function after successive steps cannot exceed this value.

 h An initial step size.

 N The maximum number of iterations.

1. Let 0k  .

2. If k > N, we have iterated N times, so stop and return signalling a failure to converge.

3. Let and letting j take the values from 1 to n do the following:

a. If      ,k k kf x h f x f x h   , continue calculating  kf x nh for positive integer values of n

until     1k kf x n h f x nh    and then set 1k kx x nh   ,

b. otherwise, if      ,k k kf x h f x f x h   , continue calculating  kf x nh for positive integer

values of n until     1k kf x n h f x nh    and then set 1k kx x nh   ,

c. otherwise, set 1k kx x  .

4. If |h| < step and |f (xk+1) – min{f (xk – h), f (xk + h)}| < step, we are done and return xk+1.

5. Increment k and return to Step 2.

Acknowledgement: Jakob Koblinsky noted that I mistakenly copied 1k kx x nh   in step 3b, which should be

subtracting nh. This has been corrected.

