## In a nutshell: Step-by-step optimization

Given a continuous and differentiable real-valued function $f$ of a real variable with an initial approximation of an extremum $x_{0}$. This algorithm uses iteration and interpolating polynomials.

Parameters:
$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the minimum cannot exceed this value.
$\varepsilon_{\mathrm{abs}} \quad$ The difference in the value of the function after successive steps cannot exceed this value.
$h \quad$ An initial step size.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k>N$, we have iterated $N$ times, so stop and return signalling a failure to converge.
3. Let and letting $j$ take the values from 1 to $n$ do the following:
a. If $f\left(x_{k}+h\right)<f\left(x_{k}\right), f\left(x_{k}-h\right)$, continue calculating $f\left(x_{k}+n h\right)$ for positive integer values of $n$ until $f\left(x_{k}+(n+1) h\right)>f\left(x_{k}+n h\right)$ and then set $x_{k+1} \leftarrow x_{k}+n h$,
b. otherwise, if $f\left(x_{k}-h\right)<f\left(x_{k}\right), f\left(x_{k}+h\right)$, continue calculating $f\left(x_{k}-n h\right)$ for positive integer values of $n$ until $f\left(x_{k}-(n+1) h\right)>f\left(x_{k}-n h\right)$ and then set $x_{k+1} \leftarrow x_{k}-n h$,
c. otherwise, set $x_{k+1} \leftarrow x_{k}$.
4. If $|h|<\varepsilon_{\text {step }}$ and $\left|f\left(x_{k+1}\right)-\min \left\{f\left(x_{k}-h\right), f\left(x_{k}+h\right)\right\}\right|<\varepsilon_{\text {step }}$, we are done and return $x_{k+1}$.
5. Increment $k$ and return to Step 2.

Acknowledgement: Jakob Koblinsky noted that I mistakenly copied $x_{k+1} \leftarrow x_{k}+n h$ in step 3 b , which should be subtracting $n h$. This has been corrected.

